10 research outputs found

    A Reactive and Efficient Walking Pattern Generator for Robust Bipedal Locomotion

    Full text link
    Available possibilities to prevent a biped robot from falling down in the presence of severe disturbances are mainly Center of Pressure (CoP) modulation, step location and timing adjustment, and angular momentum regulation. In this paper, we aim at designing a walking pattern generator which employs an optimal combination of these tools to generate robust gaits. In this approach, first, the next step location and timing are decided consistent with the commanded walking velocity and based on the Divergent Component of Motion (DCM) measurement. This stage which is done by a very small-size Quadratic Program (QP) uses the Linear Inverted Pendulum Model (LIPM) dynamics to adapt the switching contact location and time. Then, consistent with the first stage, the LIPM with flywheel dynamics is used to regenerate the DCM and angular momentum trajectories at each control cycle. This is done by modulating the CoP and Centroidal Momentum Pivot (CMP) to realize a desired DCM at the end of current step. Simulation results show the merit of this reactive approach in generating robust and dynamically consistent walking patterns

    ANTI-WINDUP LPV CONTROL DESIGN OF MR DAMPERS FOR STRUCTURAL VIBRATION SUPPRESSION

    Get PDF
    ABSTRACT Magneto-rheological (MR) dampers that belong to the family of semi-active devices are widely used for vibration atten

    Paraffin Nanocomposites for Heat Management of Lithium-Ion Batteries: A Computational Investigation

    Get PDF
    Lithium-ion (Li-ion) batteries are currently considered as vital components for advances in mobile technologies such as those in communications and transport. Nonetheless, Li-ion batteries suffer from temperature rises which sometimes lead to operational damages or may even cause fire. An appropriate solution to control the temperature changes during the operation of Li-ion batteries is to embed batteries inside a paraffin matrix to absorb and dissipate heat. In the present work, we aimed to investigate the possibility of making paraffin nanocomposites for better heat management of a Li-ion battery pack. To fulfill this aim, heat generation during a battery charging/discharging cycles was simulated using Newman’s well established electrochemical pseudo-2D model. We couple this model to a 3D heat transfer model to predict the temperature evolution during the battery operation. In the later model, we considered different paraffin nanocomposites structures made by the addition of graphene, carbon nanotubes, and fullerene by assuming the same thermal conductivity for all fillers. This way, our results mainly correlate with the geometry of the fillers. Our results assess the degree of enhancement in heat dissipation of Li-ion batteries through the use of paraffin nanocomposites. Our results may be used as a guide for experimental set-ups to improve the heat management of Li-ion batteries

    Iterative Optimal and Adaptive Control of a Near Isothermal Liquid Piston Air Compressor in a Compressed Air Energy Storage System

    No full text
    Abstract — The power density and efficiency of high compression ratio (∼200:1) air compressors/expanders are crucial for the economical viability of a Compressed Air Energy Storage (CAES) system such as the one proposed in [1]. There is a trade-off between power density and efficiency that is strongly dependent on the heat transfer capability within compressor/expander. In previous papers, we have shown that the compression or expansion trajectory can be optimized so that for a given power, the efficiency can be optimized and vice versa. Theoretically, for high compression ratios, the improvement over ad-hoc trajectories can be significant- for example, at the same efficiency of 90%, the power can be increased by 3-5 folds [2], [3], [4], [5]. Yet, the optimal trajectories depend on the heat transfer coefficient profile that is often unknown. In this paper, we focus on the experimental study of an iterative control algorithm to track a compression trajectory that optimizes the efficiency-power trade-off in a liquid piston air compressor. First, an adaptive controller is developed to track any desired compression trajectory characterized by the temperature-volume profile. The controller adaptively estimates the unknown heat transfer coefficient. Second, the estimated heat transfer coefficient from one iteration is then used to estimate the optimal compression trajectory for the next iteration. As the estimate of the heat transfer coefficient improves from one iteration to the next, the quality of the estimated optimal trajectory also improves. This leads to successively improved efficiency. The experimental results of optimal trajectories show up to 2 % improvement in compression efficiency compared to linear trajectories in a same power density. I

    A Systematic Review and Meta-analysis of Toxocariasis in Iran: Is it Time to Take it Seriously?

    No full text
    corecore